
Paralelización con OpenMP

Computación de Altas Prestaciones
Máster Universitario en Ingeniería Informática

Emilio Cobos Álvarez
Miguel Barranquero Díez

Índice
1. Introducción ⁠1
2. Importancia de la paralelización híbrida MPI+OpenMP ⁠1
3. Cambios al código ⁠2

3.1. Paralelización del código con pthreads ⁠2
3.2. Paralelización del código MPI ⁠3

4. Comparaciones ⁠5
4.1. Datos completos (tras arreglar el pinning) ⁠8

5. Otras observaciones y conclusiones ⁠11

1. Introducción
Se ha paralelizado el ejemplo de waterwave siguiendo el modelo propuesto anteriormente,
usando OpenMP. Se ha paralelizado tanto la versión original, como la versión con MPI y nosequé.

2. Importancia de la paralelización híbrida MPI+OpenMP
La combinación de MPI (Message Passing Interface) y OpenMP representa un enfoque de
paralelización multinivel que permite explotar eficientemente la arquitectura jerárquica de los
sistemas de computación modernos. Este modelo híbrido es particularmente relevante en clús­
teres de computación de altas prestaciones, donde cada nodo contiene múltiples procesadores
con memoria compartida, pero los nodos entre sí tienen memoria distribuida.

MPI proporciona paralelismo a nivel de proceso mediante paso de mensajes, siendo ideal para
sistemas con memoria distribuida donde cada proceso tiene su propio espacio de direcciones.
Por otro lado, OpenMP ofrece paralelismo a nivel de hilo dentro de un mismo proceso, aprove­
chando la memoria compartida dentro de un nodo. La estrategia híbrida permite usar MPI para
comunicación entre nodos y OpenMP para paralelización dentro de cada nodo, reduciendo el
número de procesos MPI necesarios y, por tanto, el overhead de comunicación entre procesos.

Esta aproximación presenta varias ventajas significativas. En primer lugar, reduce la sobrecarga
de comunicación: al disminuir el número de procesos MPI y usar hilos OpenMP dentro de
cada nodo, se minimiza el tráfico de red entre nodos. En segundo lugar, mejora la utilización
de memoria: los hilos OpenMP comparten el espacio de direcciones del proceso, evitando la
duplicación de datos que ocurriría con múltiples procesos MPI en el mismo nodo. Finalmente,
proporciona mayor flexibilidad en la configuración de recursos, permitiendo ajustar la propor­

1

ción de procesos MPI y hilos OpenMP según las características del problema y del hardware
disponible.

No obstante, la paralelización híbrida también introduce complejidades adicionales. Es necesario
considerar la compatibilidad de niveles de threading de MPI (como MPI_THREAD_FUNNELED
o MPI_THREAD_MULTIPLE), gestionar adecuadamente el pinning de procesos y hilos a núcleos
físicos para evitar contención, y equilibrar la carga de trabajo entre ambos niveles de paralelismo.
Además, el debugging y análisis de rendimiento se vuelve más complejo al tener que considerar
dos modelos de programación simultáneamente.

3. Cambios al código
Afortunadamente ambas versiones son trivialmente paralelizables con OpenMP con mínimos
cambios, ya que originalmente paralelizamos el bucle for de manera similar.

3.1. Paralelización del código con pthreads
Todos los cambios necesarios fueron añadir un flag para usar OpenMP en vez de nuestro
ThreadPool, y una entrada nueva al Makefile para compilar con OpenMP.

diff --git a/Makefile b/Makefile

index e802619..2a21d4e 100644

--- a/Makefile

+++ b/Makefile

@@ -13,6 +13,9 @@ default: waterwave_cpp waterwave_mpi

 waterwave_cpp: waterwave.cpp

 $(CXX) $< -o $@ $(CXXFLAGS)

+waterwave_omp: waterwave.cpp

+ $(CXX) $< -o $@ $(CXXFLAGS) -DOMP -fopenmp

+

 waterwave_mpi: waterwave_mpi.cpp

 mpic++ $< -o $@ $(CXXFLAGS)

diff --git a/waterwave.cpp b/waterwave.cpp

index 1e80ee9..41bf227 100644

--- a/waterwave.cpp

+++ b/waterwave.cpp

@@ -12,6 +12,10 @@

 using std::size_t;

+#ifdef OMP

+#include <omp.h>

+#endif

+

 template <typename T> struct Range {

 T m_start;

 T m_end;

@@ -70,6 +74,8 @@ inline size_t index_for(size_t x, size_t y, size_t

size) {

 }

\

2

 } while (false)

+#ifndef OMP

+

 struct ThreadPool {

 struct ThreadState {

 size_t m_index;

@@ -176,6 +182,7 @@ struct ThreadPool {

 };

 ThreadPool ThreadPool::s_instance;

+#endif

 struct Grid {

 size_t size{};

@@ -299,6 +306,14 @@ struct SimulationState {

 template <typename F>

 void maybe_parallelize_loop(Range<size_t> x_range, Range<size_t>

y_range,

 F callback) {

+#ifdef OMP

+ #pragma omp parallel for

+ for (size_t i = x_range.m_start; i < x_range.m_end; ++i) {

+ for (size_t j : y_range) {

+ callback(i, j);

+ }

+ }

+#else

 auto increment = x_range.size() / THREADS;

 for (size_t i = 0; i < THREADS; ++i) {

 size_t start = x_range.m_start + (i * increment);

@@ -315,6 +330,7 @@ struct SimulationState {

 });

 }

 ThreadPool::join();

+#endif

 }

 void reflect_boundaries() {

@@ -461,6 +477,9 @@ struct SimulationState {

 };

 int main() {

+#ifdef OMP

+ omp_set_num_threads(THREADS);

+#endif

 SimulationState state;

 while (state.tick()) {

 // keep going...

3.2. Paralelización del código MPI
Similarmente, los cambios necesario para la paralización híbrida son mínimos:

3

diff --git a/Makefile b/Makefile

index 2a21d4e..14ba73a 100644

--- a/Makefile

+++ b/Makefile

@@ -19,6 +19,9 @@ waterwave_omp: waterwave.cpp

 waterwave_mpi: waterwave_mpi.cpp

 mpic++ $< -o $@ $(CXXFLAGS)

+waterwave_mpi_omp: waterwave_mpi.cpp

+ mpic++ $< -o $@ $(CXXFLAGS) -DOMP -fopenmp

+

 mpismoketest: waterwave_mpi

 DROPS=$(DROPS) mpirun waterwave_mpi

diff --git a/waterwave_mpi.cpp b/waterwave_mpi.cpp

index e5b9fc4..79e1b47 100644

--- a/waterwave_mpi.cpp

+++ b/waterwave_mpi.cpp

@@ -11,6 +11,9 @@

 #include

 #include <type_traits>

 #include <vector>

+#ifdef OMP

+#include <omp.h>

+#endif

 struct Point {

 uint32_t x = 0;

@@ -106,6 +109,7 @@ static uint32_t get_size_from_env(const char

*name, uint32_t def) {

 static const uint32_t name = get_size_from_env(#name, def)

 ENV_SIZE(GRID_SIZE, 64);

+ENV_SIZE(OMP_THREADS, 1);

 ENV_SIZE(MAX_DROPS, 5); // Maximum number of drops

 ENV_SIZE(DROP_STEP, 500); // Steps between drops

 ENV_SIZE(STEP_COUNT, 1000); // Total steps

@@ -227,7 +231,10 @@ struct SimulationState {

 template <typename F>

 void maybe_parallelize_loop(Range<uint32_t> x_range,

Range<uint32_t> y_range,

 F callback) {

- for (uint32_t i : x_range) {

+#ifdef OMP

+#pragma omp parallel for

+#endif

+ for (uint32_t i = x_range.m_start; i < x_range.m_end; ++i) {

 for (uint32_t j : y_range) {

 callback(i, j);

 }

@@ -501,7 +508,18 @@ struct SimulationState {

 };

4

 int main(int argc, char **argv) {

+ int provided = 0;

+#ifdef OMP

+ MPI_INFALLIBLE(MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED,

&provided));

+ if (provided < MPI_THREAD_FUNNELED) {

+ assert(false && "Couldn't do multi-threaded MPI?");

+ abort();

+ }

+ omp_set_num_threads(OMP_THREADS);

+#else

 MPI_INFALLIBLE(MPI_Init(&argc, &argv));

+#endif

+

 MPI_INFALLIBLE(MPI_Comm_size(MPI_COMM_WORLD,

&MPI::g_proc_count));

 MPI_INFALLIBLE(MPI_Comm_rank(MPI_COMM_WORLD, &MPI::g_pid));

4. Comparaciones
Se ha modificado el script de las entregas anteriores para comparar las versiones normales y
con OpenMP para también comparar OpenMP y OpenMP+MPI. Para ello se ha creado un script
llamado launch_mpi_omp que se encarga de traducir la variable Threads en un mix de nodos
MPI y hilos OpenMP:

#!/usr/bin/env bash

set -euxo pipefail

export MPI_PROCS=$((THREADS / 2))

if [$MPI_PROCS -eq 0]; then

 # Deal with THREADS=1

 export MPI_PROCS=1

fi

export OMP_THREADS=$((THREADS / MPI_PROCS))

mpirun \

 -n $MPI_PROCS \

 -x STEP_COUNT \

 -x DUMP_EVERY \

 -x GRID_SIZE \

 ./waterwave_mpi_omp

Tras ejecutar la misma comparación, se obtiene el siguiente rendimiento para la matriz de 512:

5

Figura 1: Datos con matriz de 512

Se observa una anomalía con la versión híbrida, que es más lenta de lo esperado. Esta anomalía
es reproducible, y el perfil de rendimiento1 no muestra nada anómalo, parece que el trabajo se
está distribuyendo como es de esperar.

Investigamos con perf stat, comparada con la versión de OpenMP normal:

$ THREADS=2 GRID_SIZE=512 /usr/bin/time -o t.time perf stat ./

launch_mpi_omp >t.out

Performance counter stats for './launch_mpi_omp':

 95121965923 task-clock # 1.949

CPUs utilized

 19211 context-switches #

201.962 /sec

 56 cpu-migrations #

0.589 /sec

 8511 page-faults #

89.475 /sec

 644749254139 instructions # 1.41

insn per cycle

 # 0.01 stalled

cycles per insn

 458205714784 cycles # 4.817

GHz

 3323560348 stalled-cycles-frontend # 0.73%

frontend cycles idle

 8621620251 branches # 90.638

M/sec

 20223156 branch-misses # 0.23%

of all branches

 48.797620834 seconds time elapsed

1https://share.firefox.dev/3LetGdr

6

https://share.firefox.dev/3LetGdr
https://share.firefox.dev/3LetGdr

 94.612146000 seconds user

 0.208231000 seconds sys

$ THREADS=2 GRID_SIZE=512 /usr/bin/time -o t.time perf stat ./

waterwave_omp >t.out

 Performance counter stats for './waterwave_omp':

 56906275617 task-clock # 1.991

CPUs utilized

 405 context-switches #

7.117 /sec

 133 cpu-migrations #

2.337 /sec

 2487 page-faults #

43.703 /sec

 529001639388 instructions # 2.01

insn per cycle

 # 0.00 stalled

cycles per insn

 263829534379 cycles # 4.636

GHz

 1105091784 stalled-cycles-frontend # 0.42%

frontend cycles idle

 9042363379 branches # 158.899

M/sec

 21431108 branch-misses # 0.24%

of all branches

 28.584208088 seconds time elapsed

 56.723608000 seconds user

 0.013957000 seconds sys

La mayor anomalía se encuentra en context-switches, que son mucho mayores en la versión
híbrida. Esto hace sospechar inmediatamente de un conflicto de prioridades.

OpenMPI fija el proceso completo a un core, y este procesador no tiene hyper-threading, por lo
que ambos hilos compiten por la misma CPU.

Se investigó, y se confirmó que pasando --bind-to none a mpirun el rendimiento vuelve a los
niveles esperados:

7

Figura 2: Datos con matriz de 512

4.1. Datos completos (tras arreglar el pinning)

Programa Tamaño del grid Hilos Tiempo

launch_mpi 128 1 0:02.98

launch_mpi 128 2 0:02.25

launch_mpi 128 4 0:01.92

launch_mpi 128 8 0:01.89

launch_mpi 16 1 0:01.48

launch_mpi 16 2 0:01.57

launch_mpi 16 4 0:01.51

launch_mpi 16 8 0:01.53

launch_mpi 256 1 0:08.44

launch_mpi 256 2 0:04.87

launch_mpi 256 4 0:03.24

launch_mpi 256 8 0:02.74

launch_mpi 32 1 0:01.58

launch_mpi 32 2 0:01.54

launch_mpi 32 4 0:01.52

launch_mpi 32 8 0:01.56

launch_mpi 512 1 0:55.36

launch_mpi 512 2 0:28.21

launch_mpi 512 4 0:16.44

launch_mpi 512 8 0:06.72

launch_mpi 64 1 0:01.86

launch_mpi 64 2 0:01.68

8

Programa Tamaño del grid Hilos Tiempo

launch_mpi 64 4 0:01.61

launch_mpi 64 8 0:01.66

launch_mpi 8 1 0:01.58

launch_mpi 8 2 0:01.48

launch_mpi 8 4 0:01.49

launch_mpi 8 8 0:01.55

launch_mpi_omp 128 1 0:03.06

launch_mpi_omp 128 2 0:02.35

launch_mpi_omp 128 4 0:01.95

launch_mpi_omp 128 8 0:02.00

launch_mpi_omp 16 1 0:01.50

launch_mpi_omp 16 2 0:01.59

launch_mpi_omp 16 4 0:01.57

launch_mpi_omp 16 8 0:01.60

launch_mpi_omp 256 1 0:08.53

launch_mpi_omp 256 2 0:05.44

launch_mpi_omp 256 4 0:03.45

launch_mpi_omp 256 8 0:03.09

launch_mpi_omp 32 1 0:01.56

launch_mpi_omp 32 2 0:01.67

launch_mpi_omp 32 4 0:01.61

launch_mpi_omp 32 8 0:01.69

launch_mpi_omp 512 1 0:55.82

launch_mpi_omp 512 2 0:29.29

launch_mpi_omp 512 4 0:16.54

launch_mpi_omp 512 8 0:12.82

launch_mpi_omp 64 1 0:01.85

launch_mpi_omp 64 2 0:01.77

launch_mpi_omp 64 4 0:01.64

launch_mpi_omp 64 8 0:01.70

launch_mpi_omp 8 1 0:01.47

launch_mpi_omp 8 2 0:01.52

launch_mpi_omp 8 4 0:01.51

launch_mpi_omp 8 8 0:01.53

waterwave_cpp 128 1 0:02.13

waterwave_cpp 128 2 0:01.35

waterwave_cpp 128 4 0:00.97

9

Programa Tamaño del grid Hilos Tiempo

waterwave_cpp 128 8 0:01.56

waterwave_cpp 16 1 0:00.42

waterwave_cpp 16 2 0:00.42

waterwave_cpp 16 4 0:00.46

waterwave_cpp 16 8 0:00.68

waterwave_cpp 256 1 0:07.73

waterwave_cpp 256 2 0:04.43

waterwave_cpp 256 4 0:02.72

waterwave_cpp 256 8 0:03.09

waterwave_cpp 32 1 0:00.52

waterwave_cpp 32 2 0:00.59

waterwave_cpp 32 4 0:00.60

waterwave_cpp 32 8 0:01.00

waterwave_cpp 512 1 0:53.70

waterwave_cpp 512 2 0:27.82

waterwave_cpp 512 4 0:15.51

waterwave_cpp 512 8 0:13.29

waterwave_cpp 64 1 0:00.82

waterwave_cpp 64 2 0:00.62

waterwave_cpp 64 4 0:00.66

waterwave_cpp 64 8 0:01.30

waterwave_cpp 8 1 0:00.46

waterwave_cpp 8 2 0:00.39

waterwave_cpp 8 4 0:00.41

waterwave_cpp 8 8 0:00.59

waterwave_omp 128 1 0:01.75

waterwave_omp 128 2 0:01.08

waterwave_omp 128 4 0:00.75

waterwave_omp 128 8 0:01.22

waterwave_omp 16 1 0:00.27

waterwave_omp 16 2 0:00.37

waterwave_omp 16 4 0:00.42

waterwave_omp 16 8 0:00.54

waterwave_omp 256 1 0:07.10

waterwave_omp 256 2 0:07.64

waterwave_omp 256 4 0:02.35

waterwave_omp 256 8 0:02.39

10

Programa Tamaño del grid Hilos Tiempo

waterwave_omp 32 1 0:00.33

waterwave_omp 32 2 0:00.37

waterwave_omp 32 4 0:00.54

waterwave_omp 32 8 0:00.89

waterwave_omp 512 1 0:53.45

waterwave_omp 512 2 0:28.15

waterwave_omp 512 4 0:15.26

waterwave_omp 512 8 0:11.72

waterwave_omp 64 1 0:00.64

waterwave_omp 64 2 0:00.46

waterwave_omp 64 4 0:00.42

waterwave_omp 64 8 0:01.19

waterwave_omp 8 1 0:00.25

waterwave_omp 8 2 0:00.27

waterwave_omp 8 4 0:00.28

waterwave_omp 8 8 0:00.33

5. Otras observaciones y conclusiones
Se ha observado que OpenMP funciona mejor que nuestra versión manual cuando no se usa
el procesador en modo «performance» (para realizar las medidas se ha usado el performance
governor2). Esto se atribuye a la combinación del uso de spin-locks (que evita que el clock del
procesador se regule) y pinning de hilos a núcleos particulares que GOMP hace por defecto
(ver OMP_PROC_BIND3). Nótese que OMP_PLACES existe por defecto, lo cual se ha verificado
usando OMP_DISPLAY_ENV=VERBOSE4.

También se ha observado que la solución con MPI funciona mejor en este hardware. Esto es
porque para el caso de 8 nodos, MPI consigue pinear cada uno a un núcleo de alto rendimiento de
este procesador, lo que combinado con el algoritmo (que mantiene sólo la fracción de la matriz
requerida en memoria) maximiza la utilidad de las cachés.

Aún así, la versión híbrida sería muy útil para ordenadores con memoria no compartida, en vez
de requerir múltiples nodos de MPI en el mismo ordenador físico.

2https://linux.die.net/man/1/cpupower-frequency-set
3https://gcc.gnu.org/onlinedocs/libgomp/OMP_005fPROC_005fBIND.html
4https://www.openmp.org/spec-html/5.0/openmpse60.html

11

https://linux.die.net/man/1/cpupower-frequency-set
https://linux.die.net/man/1/cpupower-frequency-set
https://linux.die.net/man/1/cpupower-frequency-set
https://gcc.gnu.org/onlinedocs/libgomp/OMP_005fPROC_005fBIND.html
https://www.openmp.org/spec-html/5.0/openmpse60.html
https://linux.die.net/man/1/cpupower-frequency-set
https://gcc.gnu.org/onlinedocs/libgomp/OMP_005fPROC_005fBIND.html
https://www.openmp.org/spec-html/5.0/openmpse60.html

	1. Introducción
	2. Importancia de la paralelización híbrida MPI+OpenMP
	3. Cambios al código
	3.1. Paralelización del código con pthreads
	3.2. Paralelización del código MPI

	4. Comparaciones
	4.1. Datos completos (tras arreglar el pinning)

	5. Otras observaciones y conclusiones

