Paralelizacion con OpenMP

Computacion de Altas Prestaciones

MASTER UNIVERSITARIO EN INGENIERIA INFORMATICA

Emilio Cobos Alvarez
Miguel Barranquero Diez

Indice
Introduccién

DN =

Importancia de la paralelizacién hibrida MPI+OpenMP
Cambios al codigo

©w

3.1. Paralelizacion del codigo con pthreads
3.2. Paralelizacion del codigo MPI
4. Comparaciones

O U1 W N DN ==

4.1. Datos completos (tras arreglar el pinning)
5. Otras observaciones y conclusiones 11

1. Introduccion
Se ha paralelizado el ejemplo de waterwave siguiendo el modelo propuesto anteriormente,
usando OpenMP. Se ha paralelizado tanto la version original, como la version con MPI y nosequé.

2. Importancia de la paralelizacion hibrida MPI+OpenMP

La combinacion de MPI (Message Passing Interface) y OpenMP representa un enfoque de
paralelizacién multinivel que permite explotar eficientemente la arquitectura jerarquica de los
sistemas de computacién modernos. Este modelo hibrido es particularmente relevante en clus-
teres de computacion de altas prestaciones, donde cada nodo contiene multiples procesadores
con memoria compartida, pero los nodos entre si tienen memoria distribuida.

MPI proporciona paralelismo a nivel de proceso mediante paso de mensajes, siendo ideal para
sistemas con memoria distribuida donde cada proceso tiene su propio espacio de direcciones.
Por otro lado, OpenMP ofrece paralelismo a nivel de hilo dentro de un mismo proceso, aprove-
chando la memoria compartida dentro de un nodo. La estrategia hibrida permite usar MPI para
comunicacién entre nodos y OpenMP para paralelizacion dentro de cada nodo, reduciendo el
nimero de procesos MPI necesarios y, por tanto, el overhead de comunicacion entre procesos.

Esta aproximacioén presenta varias ventajas significativas. En primer lugar, reduce la sobrecarga
de comunicacién: al disminuir el niimero de procesos MPI y usar hilos OpenMP dentro de
cada nodo, se minimiza el trafico de red entre nodos. En segundo lugar, mejora la utilizacién
de memoria: los hilos OpenMP comparten el espacio de direcciones del proceso, evitando la
duplicacion de datos que ocurriria con multiples procesos MPI en el mismo nodo. Finalmente,
proporciona mayor flexibilidad en la configuraciéon de recursos, permitiendo ajustar la propor-

cion de procesos MPI y hilos OpenMP segtn las caracteristicas del problema y del hardware
disponible.

No obstante, la paralelizacion hibrida también introduce complejidades adicionales. Es necesario
considerar la compatibilidad de niveles de threading de MPI (como MPI_THREAD FUNNELED
0 MPI_THREAD MULTIPLE), gestionar adecuadamente el pinning de procesos y hilos a nicleos
fisicos para evitar contencidn, y equilibrar la carga de trabajo entre ambos niveles de paralelismo.
Ademas, el debugging y anélisis de rendimiento se vuelve mas complejo al tener que considerar
dos modelos de programacion simultineamente.

3. Cambios al codigo
Afortunadamente ambas versiones son trivialmente paralelizables con OpenMP con minimos
cambios, ya que originalmente paralelizamos el bucle for de manera similar.

3.1. Paralelizacion del codigo con pthreads
Todos los cambios necesarios fueron afiadir un flag para usar OpenMP en vez de nuestro
ThreadPool, y una entrada nueva al Makefile para compilar con OpenMP.

diff --git a/Makefile b/Makefile
index €802619..2a21d4e 100644
--- a/Makefile
+++ b/Makefile
@@ -13,6 +13,9 @@ default: waterwave cpp waterwave mpi
waterwave cpp: waterwave.cpp
$(CXX) $< -0 $@ $(CXXFLAGS)

+waterwave omp: waterwave.cpp
+ $(CXX) $< -0 $@ $(CXXFLAGS) -DOMP -fopenmp
+
waterwave mpi: waterwave mpi.cpp
mpic++ $< -0 $@ $(CXXFLAGS)

diff --git a/waterwave.cpp b/waterwave.cpp
index 1le80ee9..41bf227 100644

--- a/waterwave.cpp

+++ b/waterwave.cpp

@@ -12,6 +12,10 @@

using std::size t;

+#ifdef OMP
+#include <omp.h>
+#endif
+
template <typename T> struct Range {
T m_start;
T m_end;
@@ -70,6 +74,8 @@ inline size_t index_for(size_t x, size_t y, size_t
size) {

}

} while (false)

+#ifndef OMP
+
struct ThreadPool {
struct ThreadState {
size t m_index;
@@ -176,6 +182,7 @@ struct ThreadPool {
Irg

ThreadPool ThreadPool::s instance;
+#endif

struct Grid {
size t size{};
@@ -299,6 +306,14 @@ struct SimulationState {
template <typename F>
void maybe parallelize loop(Range<size t> x range, Range<size t>
y_range,
F callback) {
+#ifdef OMP
+ #pragma omp parallel for
+ for (size t i = x _range.m start; i < x _range.m end; ++i) {
+ for (size t j : y range) {
+ callback(i, j);
+ }
+ }
+#else
auto increment = x_range.size() / THREADS;
for (size t i = 0; i < THREADS; ++i) {
size t start = x range.m start + (i * increment);
@ -315,6 +330,7 @@ struct SimulationState {
1)
}
ThreadPool::join();
+#endif

}

void reflect boundaries() {
@@ -461,6 +477,9 @@ struct SimulationState {
};

int main() {
+#ifdef OMP
+ omp_set num_threads(THREADS) ;
+#endif
SimulationState state;
while (state.tick()) {
// keep going...

3.2. Paralelizacion del codigo MPI

Similarmente, los cambios necesario para la paralizacion hibrida son minimos:

diff --git a/Makefile b/Makefile
index 2a2ld4e..1l4ba73a 100644
--- a/Makefile
+++ b/Makefile
@ -19,6 +19,9 @@ waterwave_omp: waterwave.cpp
waterwave mpi: waterwave mpi.cpp
mpic++ $< -0 $@ $(CXXFLAGS)

+waterwave mpi omp: waterwave mpi.cpp
+ mpic++ $< -0 $@ $(CXXFLAGS) -DOMP -fopenmp
+
mpismoketest: waterwave mpi
DROPS=$(DROPS) mpirun waterwave mpi

diff --git a/waterwave mpi.cpp b/waterwave mpi.cpp
index e5b9fc4..79elb47 100644
--- a/waterwave mpi.cpp

+++ b/waterwave mpi.cpp

@@ -11,6 +11,9 @@

#include

#include <type traits>
#include <vector>

+#ifdef OMP

+#include <omp.h>

+#endif

struct Point {
uint32 t x = 0;
@@ -106,6 +109,7 @@ static uint32_t get_size_from_env(const char
*name, uint32_t def) {
static const uint32 t name = get size from env(#name, def)

ENV_SIZE(GRID SIZE, 64);
+ENV_SIZE(OMP_THREADS, 1);
ENV_SIZE(MAX DROPS, 5); // Maximum number of drops
ENV_SIZE(DROP_STEP, 500); // Steps between drops
ENV_SIZE(STEP_COUNT, 1000); // Total steps
@@ -227,7 +231,10 @@ struct SimulationState {
template <typename F>
void maybe parallelize loop(Range<uint32 t> x_range,
Range<uint32 t> y range,
F callback) {
- for (uint32 t i : x range) {
+#ifdef OMP
+#pragma omp parallel for
+#endif
+ for (uint32 t i = x _range.m start; i < x range.m end; ++i) {
for (uint32_t j : y range) {
callback(i, j);
}
@@ -501,7 +508,18 @@ struct SimulationState {
+

int main(int argc, char **argv) {
+ int provided = 0;
+#ifdef OMP
+ MPI INFALLIBLE(MPI Init thread(&argc, &argv, MPI THREAD FUNNELED,
&provided));
+ 1if (provided < MPI_THREAD FUNNELED) {
+ assert(false & "Couldn't do multi-threaded MPI?");
+ abort();
+
+ omp_set num threads(OMP_THREADS) ;
+#else
MPI_ INFALLIBLE(MPI Init(&argc, &argv));
+#endif
+
MPI INFALLIBLE(MPI Comm size(MPI COMM WORLD,
&MPI::g proc_count));
MPI INFALLIBLE(MPI Comm_rank(MPI COMM WORLD, &MPI::g pid));

4. Comparaciones

Se ha modificado el script de las entregas anteriores para comparar las versiones normales y
con OpenMP para también comparar OpenMP y OpenMP+MPI. Para ello se ha creado un script
llamado launch_mpi_omp que se encarga de traducir la variable Threads en un mix de nodos
MPI y hilos OpenMP:

#!/usr/bin/env bash

set -euxo pipefail
export MPI_PROCS=$((THREADS / 2))
if [$MPI PROCS -eq 0]; then
Deal with THREADS=1
export MPI_PROCS=1
fi
export OMP_THREADS=$((THREADS / MPI PROCS))
mpirun \
-n $MPI_PROCS \
-x STEP_COUNT \
-x DUMP_EVERY \
-x GRID SIZE \
./waterwave mpi omp

Tras ejecutar la misma comparacién, se obtiene el siguiente rendimiento para la matriz de 512:

Grid size =512
waterwave_cpp [__] launch_mpi launch_mpi_omp waterwave_omp
60
50

40

30

Tiempo (segundos)

20

1 2 3 4 5 6 7 8
Threads / Nodos (#)

Figura 1: Datos con matriz de 512
Se observa una anomalia con la version hibrida, que es mas lenta de lo esperado. Esta anomalia

es reproducible, y el perfil de rendimiento' no muestra nada anémalo, parece que el trabajo se
esta distribuyendo como es de esperar.

Investigamos con perf stat, comparada con la versiéon de OpenMP normal:
$ THREADS=2 GRID SIZE=512 /usr/bin/time -o t.time perf stat ./

launch_mpi omp >t.out
Performance counter stats for './launch mpi omp"':

95121965923 task-clock # 1.949
CPUs utilized
19211 context-switches #
201.962 /sec
56 cpu-migrations #
0.589 /sec
8511 page-faults #
89.475 /sec
644749254139 instructions # 1.41

insn per cycle
0.01 stalled
cycles per insn

458205714784 cycles # 4.817
GHz
3323560348 stalled-cycles-frontend # 0.73%
frontend cycles idle
8621620251 branches # 90.638
M/sec
20223156 branch-misses # 0.23%

of all branches

48.797620834 seconds time elapsed

*https://share firefox.dev/3LetGdr

https://share.firefox.dev/3LetGdr
https://share.firefox.dev/3LetGdr

94.612146000 seconds user
0.208231000 seconds sys

$ THREADS=2 GRID SIZE=512 /usr/bin/time -o t.time perf stat ./
waterwave_omp >t.out
Performance counter stats for './waterwave omp':

56906275617 task-clock # 1.991
CPUs utilized
405 context-switches #
7.117 /sec
133 cpu-migrations #
2.337 /sec
2487 page-faults #
43.703 /sec
529001639388 instructions # 2.01

insn per cycle
0.00 stalled
cycles per insn

263829534379 cycles # 4.636
GHz
1105091784 stalled-cycles-frontend # 0.42%
frontend cycles idle
9042363379 branches # 158.899
M/sec
21431108 branch-misses # 0.24%

of all branches
28.584208088 seconds time elapsed

56.723608000 seconds user
0.013957000 seconds sys

La mayor anomalia se encuentra en context-switches, que son mucho mayores en la versién
hibrida. Esto hace sospechar inmediatamente de un conflicto de prioridades.

OpenMPI fija el proceso completo a un core, y este procesador no tiene hyper-threading, por lo
que ambos hilos compiten por la misma CPU.

Se investigd, y se confirmé que pasando - -bind-to none a mpirun el rendimiento vuelve a los
niveles esperados:

Grid size =512
waterwave_cpp [__] launch_mpi launch_mpi_omp waterwave_omp [launch_mpi_omp_nopin
60
50

40

30

Tiempo (segundos)

20

1 2 3 4 5 6 7
Threads / Nodos (#)

Figura 2: Datos con matriz de 512

4.1. Datos completos (tras arreglar el pinning)

Programa Tamailo del grid | Hilos | Tiempo
launch_mpi 128 1 0:02.98
launch_mpi 128 2 0:02.25
launch_mpi 128 4 0:01.92
launch_mpi 128 8 0:01.89
launch_mpi 16 1 0:01.48
launch_mpi 16 2 0:01.57
launch_mpi 16 4 0:01.51
launch_mpi 16 8 0:01.53
launch_mpi 256 1 0:08.44
launch_mpi 256 2 0:04.87
launch_mpi 256 4 0:03.24
launch_mpi 256 8 0:02.74
launch_mpi 32 1 0:01.58
launch_mpi 32 2 0:01.54
launch_mpi 32 4 0:01.52
launch_mpi 32 8 0:01.56
launch_mpi 512 1 0:55.36
launch_mpi 512 2 0:28.21
launch_mpi 512 4 0:16.44
launch_mpi 512 8 0:06.72
launch_mpi 64 1 0:01.86
launch_mpi 64 2 0:01.68

Programa Tamailo del grid | Hilos | Tiempo

launch_mpi 64 4 0:01.61

launch_mpi 64 8 0:01.66

launch_mpi 8 1 0:01.58

launch_mpi 8 2 0:01.48

launch_mpi 8 4 0:01.49

launch_mpi 8 8 0:01.55
launch_mpi_omp 128 1 0:03.06
launch_mpi_omp 128 2 0:02.35
launch_mpi_omp 128 4 0:01.95
launch_mpi_omp 128 8 0:02.00
launch_mpi_omp 16 1 0:01.50
launch_mpi_omp 16 2 0:01.59
launch_mpi_omp 16 4 0:01.57
launch_mpi_omp 16 8 0:01.60
launch_mpi_omp 256 1 0:08.53
launch_mpi_omp 256 2 0:05.44
launch_mpi_omp 256 4 0:03.45
launch_mpi_omp 256 8 0:03.09
launch_mpi_omp 32 1 0:01.56
launch_mpi_omp 32 2 0:01.67
launch_mpi_omp 32 4 0:01.61
launch_mpi_omp 32 8 0:01.69
launch_mpi_omp 512 1 0:55.82
launch_mpi_omp 512 2 0:29.29
launch_mpi_omp 512 4 0:16.54
launch_mpi_omp 512 8 0:12.82
launch_mpi_omp 64 1 0:01.85
launch_mpi_omp 64 2 0:01.77
launch_mpi_omp 64 4 0:01.64
launch_mpi_omp 64 8 0:01.70
launch_mpi_omp 8 1 0:01.47
launch_mpi_omp 8 2 0:01.52
launch_mpi_omp 8 4 0:01.51
launch_mpi_omp 8 8 0:01.53
waterwave_cpp 128 1 0:02.13
waterwave_cpp 128 2 0:01.35
waterwave_cpp 128 4 0:00.97

Programa Tamailo del grid | Hilos | Tiempo
waterwave_cpp 128 8 0:01.56
waterwave_cpp 16 1 0:00.42
waterwave_cpp 16 2 0:00.42
waterwave_cpp 16 4 0:00.46
waterwave_cpp 16 8 0:00.68
waterwave_cpp 256 1 0:07.73
waterwave_cpp 256 2 0:04.43
waterwave_cpp 256 4 0:02.72
waterwave_cpp 256 8 0:03.09
waterwave_cpp 32 1 0:00.52
waterwave_cpp 32 2 0:00.59
waterwave_cpp 32 4 0:00.60
waterwave_cpp 32 8 0:01.00
waterwave_cpp 512 1 0:53.70
waterwave_cpp 512 2 0:27.82
waterwave_cpp 512 4 0:15.51
waterwave_cpp 512 8 0:13.29
waterwave_cpp 64 1 0:00.82
waterwave_cpp 64 2 0:00.62
waterwave_cpp 64 4 0:00.66
waterwave_cpp 64 8 0:01.30
waterwave_cpp 8 1 0:00.46
waterwave_cpp 8 2 0:00.39
waterwave_cpp 8 4 0:00.41
waterwave_cpp 8 8 0:00.59
waterwave_omp 128 1 0:01.75
waterwave_omp 128 2 0:01.08
waterwave_omp 128 4 0:00.75
waterwave_omp 128 8 0:01.22
waterwave_omp 16 1 0:00.27
waterwave_omp 16 2 0:00.37
waterwave_omp 16 4 0:00.42
waterwave_omp 16 3 0:00.54
waterwave_omp 256 1 0:07.10
waterwave_omp 256 2 0:07.64
waterwave_omp 256 4 0:02.35
waterwave_omp 256 8 0:02.39

10

Programa Tamailo del grid | Hilos | Tiempo
waterwave_omp 32 1 0:00.33
waterwave_omp 32 2 0:00.37
waterwave_omp 32 4 0:00.54
waterwave_omp 32 8 0:00.89
waterwave_omp 512 1 0:53.45
waterwave_omp 512 2 0:28.15
waterwave_omp 512 4 0:15.26
waterwave_omp 512 8 0:11.72
waterwave_omp 64 1 0:00.64
waterwave_omp 64 2 0:00.46
waterwave_omp 64 4 0:00.42
waterwave_omp 64 8 0:01.19
waterwave_omp 8 1 0:00.25
waterwave_omp 8 2 0:00.27
waterwave_omp 8 4 0:00.28
waterwave_omp 8 8 0:00.33

5. Otras observaciones y conclusiones

Se ha observado que OpenMP funciona mejor que nuestra versiéon manual cuando no se usa
el procesador en modo «performance» (para realizar las medidas se ha usado el performance
governor?). Esto se atribuye a la combinacién del uso de spin-locks (que evita que el clock del
procesador se regule) y pinning de hilos a ntcleos particulares que GOMP hace por defecto
(ver OMP_PROC_BIND?). Notese que OMP_PLACES existe por defecto, lo cual se ha verificado
usando OMP_DISPLAY_ ENV=VERBOSE®.

También se ha observado que la soluciéon con MPI funciona mejor en este hardware. Esto es
porque para el caso de 8 nodos, MPI consigue pinear cada uno a un nicleo de alto rendimiento de
este procesador, lo que combinado con el algoritmo (que mantiene sé6lo la fraccion de la matriz
requerida en memoria) maximiza la utilidad de las cachés.

Atn asi, la version hibrida seria muy util para ordenadores con memoria no compartida, en vez
de requerir multiples nodos de MPI en el mismo ordenador fisico.

*https://linux.die.net/man/1/cpupower-frequency-set
*https://gec.gnu.org/onlinedocs/libgomp/OMP_005fPROC_005fBIND.html

*https://www.openmp.org/spec-html/5.0/openmpse60.html

11

https://linux.die.net/man/1/cpupower-frequency-set
https://linux.die.net/man/1/cpupower-frequency-set
https://linux.die.net/man/1/cpupower-frequency-set
https://gcc.gnu.org/onlinedocs/libgomp/OMP_005fPROC_005fBIND.html
https://www.openmp.org/spec-html/5.0/openmpse60.html
https://linux.die.net/man/1/cpupower-frequency-set
https://gcc.gnu.org/onlinedocs/libgomp/OMP_005fPROC_005fBIND.html
https://www.openmp.org/spec-html/5.0/openmpse60.html

	1. Introducción
	2. Importancia de la paralelización híbrida MPI+OpenMP
	3. Cambios al código
	3.1. Paralelización del código con pthreads
	3.2. Paralelización del código MPI

	4. Comparaciones
	4.1. Datos completos (tras arreglar el pinning)

	5. Otras observaciones y conclusiones

